118 research outputs found

    Editorial: Novel Actuators, Sensors and Control Systems for Endoscopic Robots

    Get PDF
    Editorial on the Research Topic. Novel Actuators, Sensors and Control Systems for Endoscopic Robots

    Vocal Folds Disorders Detection and Classification in Endoscopic Narrow-Band Images

    Get PDF
    The diagnosis of vocal folds (VF) diseases is error- prone due to the large variety of diseases that can affect them. VF lesions can be divided in nodular, e.g. nodules, polyps and cysts, and diffuse, e.g. hyperplastic laryngitis and carcinoma. By endoscopic examination, the clinician traditionally evaluates the presence of macroscopic formations and mucosal vessels alteration. Endoscopic narrow-band imaging (NBI) has recently started to be employed since it provides enhanced vessels contrast as compared to classical white-light endoscopy. This work presents a preliminary study on the development of an automatic diagnostic tool based on the assessment of vocal cords symmetry in NBI images. The objective is to identify possible protruding mass lesions on which subsequent vessels analysis may be performed. The method proposed here is based on the segmentation of the glottal area (GA) from the endoscopic images, based on which the right and the left portions of the vocal folds are detected and analyzed for the detection of protruding areas. The obtained information is then used to classify the VF edges as healthy or pathological. Results from the analysis of 22 endoscopic NBI images demonstrated that the proposed algorithm is robust and effective, providing a 100% success rate in the classification of VF edges as healthy or pathological. Such results support the investment in further research to expand and improve the algorithm presented here, potentially with the addition of vessels analysis to determine the pathological classification of detected protruding areas

    Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery

    Get PDF
    Purpose: Single-incision laparoscopic surgery decreases postoperative infections, but introduces limitations in the surgeon’s maneuverability and in the surgical field of view. This work aims at enhancing intra-operative surgical visualization by exploiting the 3D information about the surgical site. An interactive guidance system is proposed wherein the pose of preoperative tissue models is updated online. A critical process involves the intra-operative acquisition of tissue surfaces. It can be achieved using stereoscopic imaging and 3D reconstruction techniques. This work contributes to this process by proposing new methods for improved dense 3D reconstruction of soft tissues, which allows a more accurate deformation identification and facilitates the registration process. Methods: Two methods for soft tissue 3D reconstruction are proposed: Method 1 follows the traditional approach of the block matching algorithm. Method 2 performs a nonparametric modified census transform to be more robust to illumination variation. The simple linear iterative clustering (SLIC) super-pixel algorithm is exploited for disparity refinement by filling holes in the disparity images. Results: The methods were validated using two video datasets from the Hamlyn Centre, achieving an accuracy of 2.95 and 1.66 mm, respectively. A comparison with ground-truth data demonstrated the disparity refinement procedure: (1) increases the number of reconstructed points by up to 43% and (2) does not affect the accuracy of the 3D reconstructions significantly. Conclusion: Both methods give results that compare favorably with the state-of-the-art methods. The computational time constraints their applicability in real time, but can be greatly improved by using a GPU implementation

    EMG-driven control in lower limb prostheses: a topic-based systematic review

    Get PDF
    Background The inability of users to directly and intuitively control their state-of-the-art commercial prosthesis contributes to a low device acceptance rate. Since Electromyography (EMG)-based control has the potential to address those inabilities, research has flourished on investigating its incorporation in microprocessor-controlled lower limb prostheses (MLLPs). However, despite the proposed benefits of doing so, there is no clear explanation regarding the absence of a commercial product, in contrast to their upper limb counterparts. Objective and methodologies This manuscript aims to provide a comparative overview of EMG-driven control methods for MLLPs, to identify their prospects and limitations, and to formulate suggestions on future research and development. This is done by systematically reviewing academical studies on EMG MLLPs. In particular, this review is structured by considering four major topics: (1) type of neuro-control, which discusses methods that allow the nervous system to control prosthetic devices through the muscles; (2) type of EMG-driven controllers, which defines the different classes of EMG controllers proposed in the literature; (3) type of neural input and processing, which describes how EMG-driven controllers are implemented; (4) type of performance assessment, which reports the performance of the current state of the art controllers. Results and conclusions The obtained results show that the lack of quantitative and standardized measures hinders the possibility to analytically compare the performances of different EMG-driven controllers. In relation to this issue, the real efficacy of EMG-driven controllers for MLLPs have yet to be validated. Nevertheless, in anticipation of the development of a standardized approach for validating EMG MLLPs, the literature suggests that combining multiple neuro-controller types has the potential to develop a more seamless and reliable EMG-driven control. This solution has the promise to retain the high performance of the currently employed non-EMG-driven controllers for rhythmic activities such as walking, whilst improving the performance of volitional activities such as task switching or non-repetitive movements. Although EMG-driven controllers suffer from many drawbacks, such as high sensitivity to noise, recent progress in invasive neural interfaces for prosthetic control (bionics) will allow to build a more reliable connection between the user and the MLLPs. Therefore, advancements in powered MLLPs with integrated EMG-driven control have the potential to strongly reduce the effects of psychosomatic conditions and musculoskeletal degenerative pathologies that are currently affecting lower limb amputees

    Dichotomaria marginata (Rhodophyta) as a bioindicator for marine pollution: An overview about its metabolites and adsorbed pollutants

    Get PDF
    Macroalgae are considered bioindicators for marine pollution, because they have the ability to quickly react to changes in their environment. In consequence, macroalgae populations fluctuate, according to species characteristics and adaptive strategies. Their cell wall polysaccharides contain sulfate groups that are capable of retaining and accumulating heavy metals. In addition to traditional contaminants, emerging pollutants are being recognized in aquatic environments. Herein, emerging pollutants have been identified after being desorbed from the macroalga Dichotomaria marginata, collected from Fortaleza Beach, Ubatuba -SP, Brazil. Based on that algal polysaccharide networks have the potential of forming hydrogen bonds with polar compounds, it was hypothesized that these pollutants would be bound to sugar polymers. Compounds present in the D. marginata samples were identified using both gas and liquid chromatography/mass spectrometry (GC/MS and HPLC/MS), assisted by computational methods. It was possible to unequivocally identify 22 emerging contaminants with GC/MS, and 16 substances with HPLC/MS

    Confident texture-based laryngeal tissue classification for early stage diagnosis support

    Get PDF
    none8siopenMoccia, Sara; De Momi, Elena; Guarnaschelli, Marco; Savazzi, Matteo; Laborai, Andrea; Guastini, Luca; Peretti, Giorgio; Mattos, Leonardo S.Moccia, Sara; De Momi, Elena; Guarnaschelli, Marco; Savazzi, Matteo; Laborai, Andrea; Guastini, Luca; Peretti, Giorgio; Mattos, Leonardo S

    Real-Time Laryngeal Cancer Boundaries Delineation on White Light and Narrow-Band Imaging Laryngoscopy with Deep Learning

    Get PDF
    Objective: To investigate the potential of deep learning for automatically delineating (segmenting) laryngeal cancer superficial extent on endoscopic images and videos. Methods: A retrospective study was conducted extracting and annotating white light (WL) and Narrow-Band Imaging (NBI) frames to train a segmentation model (SegMENT-Plus). Two external datasets were used for validation. The model's performances were compared with those of two otolaryngology residents. In addition, the model was tested on real intraoperative laryngoscopy videos. Results: A total of 3933 images of laryngeal cancer from 557 patients were used. The model achieved the following median values (interquartile range): Dice Similarity Coefficient (DSC) = 0.83 (0.70-0.90), Intersection over Union (IoU) = 0.83 (0.73-0.90), Accuracy = 0.97 (0.95-0.99), Inference Speed = 25.6 (25.1-26.1) frames per second. The external testing cohorts comprised 156 and 200 images. SegMENT-Plus performed similarly on all three datasets for DSC (p = 0.05) and IoU (p = 0.07). No significant differences were noticed when separately analyzing WL and NBI test images on DSC (p = 0.06) and IoU (p = 0.78) and when analyzing the model versus the two residents on DSC (p = 0.06) and IoU (Senior vs. SegMENT-Plus, p = 0.13; Junior vs. SegMENT-Plus, p = 1.00). The model was then tested on real intraoperative laryngoscopy videos. Conclusion: SegMENT-Plus can accurately delineate laryngeal cancer boundaries in endoscopic images, with performances equal to those of two otolaryngology residents. The results on the two external datasets demonstrate excellent generalization capabilities. The computation speed of the model allowed its application on videolaryngoscopies simulating real-time use. Clinical trials are needed to evaluate the role of this technology in surgical practice and resection margin improvement. Level of evidence: III Laryngoscope, 2024
    corecore